Приложение Е (рекомендуемое)

Методика расчета массы газового огнетушащего вещества для установок газового пожаротушения при тушении объемным способом

Е.1 Расчетная масса ГОТВ M_{r} , которая должна храниться в установке, определяется по формуле

$$M_{r} = K_{1}[M_{p} + M_{Tp} + M_{6}n],$$
 (E.1)

где $M_{_{\mathrm{D}}}$ — масса ГОТВ, предназначенная для создания в объеме помещения огнетушащей концентрации при отсутствии искусственной вентиляции воздуха, определяется по формулам:

- для ГОТВ — сжиженных газов, за исключением двуокиси углерода:

$$M_{\rm p} = V_{\rm p} \rho_1 (1 + K_2) \frac{C_{\rm H}}{100 - C_{\rm u}};$$
 (E.2)

- для ГОТВ — сжатых газов и двуокиси углерода

$$M_{\rm p} = V_{\rm p} \rho_1 (1 + K_2) \ln \frac{C_{\rm H}}{100 - C_{\rm H}},$$
 (E.3)

здесь $V_{_{\mathrm{D}}}$ — расчетный объем защищаемого помещения, м 3 . В расчетный объем помещения включается его внутренний геометрический объем, в том числе объем системы вентиляции, кондиционирования, воздушного отопления (до герметичных клапанов или заслонок). Объем оборудования, находящегося в помещении, из него не вычитается, за исключением объема сплошных (непроницаемых) строительных элементов (колонны, балки, фундаменты под оборудование и т. д.);

 K_1 — коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов; K_2 — коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения;

 ho_1 — плотность газового огнетушащего вещества с учетом высоты защищаемого объекта относительно уровня моря для минимальной температуры в помещении $T_{
m M}$, кг/м 3 , определяется по формуле

$$\rho_1 = \rho_o \frac{T_o}{T_M} K_3, \tag{E.4}$$

здесь $\rho_{\rm o}$ — плотность паров газового огнетушащего вещества при температуре $T_{\rm o}$ = 293 K (20 °C) и атмосферном давлении 101,3 кПа;

 $T_{_{0}}$ — минимальная температура воздуха в защищаемом помещении, К; $K_{_{3}}$ — поправочный коэффициент, учитывающий высоту расположения объекта относительно уровня моря, значения которого приведены в таблице Д.11 приложения Д;

Значения нормативных огнетушащих концентраций $C_{_{\! H}}$ приведены в приложении Д.

Масса остатка ГОТВ в трубопроводах $M_{\scriptscriptstyle TD}$, кг, определяется по формуле

$$M_{\rm TP} = V_{\rm TP} \rho_{\rm FOTB},\tag{E.5}$$

где $V_{\rm тp}$ — объем всей трубопроводной разводки установки, м³; $\rho_{\rm ГОТВ}$ — плотность остатка ГОТВ при давлении, которое имеется в трубопроводе после окончания истечения массы газового огнетушащего вещества $\mathit{M}_{_{\mathrm{D}}}$ в защищаемое помещение;

 $M_6 n$ — произведение остатка ГОТВ в модуле M_6 , который принимается по ТД на модуль, кг, на количество модулей в установке n.

Примечание — Для жидких горючих веществ, не приведенных в приложении Д, нормативная объемная огнетушащая концентрация ГОТВ, все компоненты которых при нормальных условиях находятся в газовой фазе, может быть определена как произведение минимальной объемной огнетушащей концентрации на коэффициент безопасности, равный 1,2 для всех ГОТВ, за исключением двуокиси углерода. Для ${\rm CO_2}$ коэффициент безопасности равен 1,7.

Для ГОТВ, находящихся при нормальных условиях в жидкой фазе, а также смесей ГОТВ, хотя бы один из компонентов которых при нормальных условиях находится в жидкой фазе, нормативную огнетушащую концентрацию определяют умножением объемной огнетушащей концентрации на коэффициент безопасности 1,2.

Методики определения минимальной объемной огнетушащей концентрации и огнетушащей концентрации изложены в ГОСТ Р 53280.3.

Е.2 Коэффициенты уравнения (Е.1) определяются следующим образом.

Е.2.1 Коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов $K_1 = 1,05$.

Е.2.2 Коэффициент, учитывающий потери газового огнетушащего вещества через проемы помещения:

$$K_2 = \Pi \delta \tau_{\text{non}} \sqrt{H},$$
 (E.6)

где Π — параметр, учитывающий расположение проемов по высоте защищаемого помещения, м^{0,5} ·с⁻¹. Численные значения параметра П выбираются следующим образом:

 $\Pi = 0,65$ — при расположении проемов одновременно в нижней (0-0,2) H и верхней зоне помещения $(0.8 - 1.0) V_1$ или одновременно на потолке и на полу помещения, причем площади проемов в нижней и верхней части примерно равны и составляют половину суммарной площади проемов; Π = 0,1 — при расположении проемов только в верхней зоне (0,8 — 1,0) H защищаемого помещения (или на потолке); $\Pi = 0.25$ — при расположении проемов только в нижней зоне (0 — 0.2) V_1 защищаемого помещения (или на полу); П = 0,4 — при примерно равномерном распределении площади проемов по всей высоте защищаемого помещения и во всех остальных случаях;

$$\delta = \frac{\sum F_{H}}{V_{D}}$$
 — параметр негерметичности помещения, м⁻¹,

где $\Sigma F_{_{\rm H}}$ — суммарная площадь проемов, м 2 ; H — высота помещения, м;

τ_{под} — нормативное время подачи ГОТВ в защищаемое помещение, с. Е.3 Тушение пожаров подкласса A₁ (кроме тлеющих материалов, указанных в 8.1.1) следует осуществлять в помещениях с параметром негерметичности не более 0,001 м⁻¹.

Значение массы $M_{_{\scriptscriptstyle
m D}}$ для тушения пожаров подкласса ${\sf A}_{_{\scriptscriptstyle
m I}}$ определяется по формуле

$$M_{\rm p} = K_4 M_{\rm p-renr}, \tag{E.7}$$

где $M_{
m p-rent}$ — значение массы $M_{
m p}$ для нормативной объемной концентрации $C_{
m H}$ при тушении н-гептана, вычисляется по формулам (2) или (3);

 $K_{\!_4}$ — коэффициент, учитывающий вид горючего материала. Значения коэффициента $K_{\!_4}$ принимаются равными: 1,3 — для тушения бумаги, гофрированной бумаги, картона, тканей и т.п. в кипах, рулонах или папках; 2,25 — для помещений с этими же материалами, в которые доступ пожарных после окончания работы АУГП исключен. Для остальных пожаров подкласса A_1 , кроме указанных в 8.1.1, значение K_2 принимается равным 1,2.

Далее расчетная масса ГОТВ вычисляется по формуле (Е.1).

При этом допускается увеличивать нормативное время подачи ГОТВ в K_{μ} раз.

В случае, если расчетное количество ГОТВ определено с использованием коэффициента $K_A = 2,25$, резерв ГОТВ может быть уменьшен и определен расчетом с применением коэффициента $K_{\!\scriptscriptstyle \Delta} = 1,3.$

Не следует вскрывать защищаемое помещение, в которое разрешен доступ, или нарушать его герметичность другим способом в течение 20 минут после срабатывания АУГП (или до приезда подразделений пожарной охраны).